IONIC EQUILIBRIUM

Electrolytes and Non Electrolytes

Electrolytes - Which dissociate into ions

Str	ong	Ele	C.
(α=	1)	

- All strong acids and salts (HCl, HNO₃) etc.
- All Alkali metal hydroxides and Ba(OH)₂

Weak Elec. ($0 < \alpha < 1$)

- HNO₂, H₂SO₃, HCIO, All oxy acids of P, All organic acids, HCN, H₃BO₃, H₂CO₃ etc.
- All Alkaline hydroxides except Ba(OH)₂, All organic bases, D-series hydroxides.

Theories of acids and bases

Theory	Arrhenius	Bronsted	Lewis
ACIDS	Donates H ⁺	Donates H ⁺	Lone Pair Acceptor
BASES	Donates OH⁻	Accepts H ⁺	Lone Pair Donor

NOTE

- Strong Acid → H⁺ + Weak Conjugate base and
- Strong Base + H⁺ → Weak Conjugate base VICE VERSA
- Amphiprotic acids are H⁺ donor and acceptor, H₁

27

lonic product of water

At 25°C,
$$K_w = [H^+][OH^-] = 10^{-14}$$

For Pure water, $[H^+] = [OH^-] = 10^{-7}$

 ${\rm K}_{\rm w}\,$ increases with increase in temperature.

pH Calculation

$$pH = -log[H^+]$$

$$pOH = -log[OH-]$$

At 25°C,
$$pH + pOH = pK_W$$

Case I : Strong acids/bases with $[H^+] \ge 10^{-6}$

Directly take the log of concentration of H⁺

Case II: Strong acids/bases with $[H^+] < 10^{-6}$

pH =
$$-\log (H^{+}_{acid} + H^{+}_{water})$$
 Here, $H^{+}_{water} = 10^{-7}$

Case III: Mixture of Strong acids/bases

Two Strong Acids

$$[H^+] = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

Two Strong Bases

$$[OH^{-}] = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

Case IV: Mixture of Strong acids/bases

H₃PO₄ will have three dissociation constants : Ka₁, Ka₂ & Ka₃. The calculation of pH is dependent upon,

$$pH = \frac{1}{2}[pKa_1-logc]$$
not dependent upon

not dependent upon the other constants

28

5. Subtract Equation with Eq. constant
$$K_2 = K/K_2$$

24

Case V: Case of Weak mono acids and bases

For a weak acid,
$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{c\alpha \times c\alpha}{c(1-\alpha)} = \frac{c\alpha^2}{1-\alpha} \quad \text{More the value of Ka}$$
 Stronger is the acid

$$1-\alpha \approx \alpha = \sqrt{\frac{K_a}{c}}$$
 $\alpha = Degree of Dissociation $c = Concentration of HA$$

$$pH = -log_{10}\sqrt{K_ac} = \frac{1}{2}(pK_a - log_{10}c)$$

Salt Hydrolysis

Hydrolysis Constant, KH

pH of solution

Weak Acid - Strong Base (pH > 7)

$$K_h = \frac{ch^2}{1 - h} = \frac{K_w}{K_b}$$
 $pH = \frac{1}{2}[pK_w - (pK_b + logc)]$

Weak Base - Strong Acid (pH < 7)

$$K_h = \frac{ch^2}{1 - h} = \frac{K_w}{K_a}$$
 $pH = \frac{1}{2}[pK_w + (pK_a + logc)]$

Weak Base - Weak Acid (pH depends on Ka and Kb)

$$K_h = \frac{h^2}{(1-h)^2} = \frac{K_w}{K_a. K_b} pH = \frac{1}{2} [pK_w + (pK_a - pK_b)]$$

29

Buffer Solution				
Acidic Buffer	Basic Buffer			
WA + Salt of WA&SB	WB + Salt of WB&SA			
 H₂CO₃ + NaHCO₃ CH₃COOH + CH₃COONa 	 NH₄OH + NH₄CI CH₃NH₂ + CHNH₃+CI⁻ 			

Henderson Equation

$$pH = pK_a + log_{10} \frac{[Salt]}{[Acid]}$$
 or $\frac{[Conjugated Base]}{[Acid]}$

Solubility Product (K_{sp})

For a salt
$$A_x B_y$$

$$s = \left[\frac{\left(K_{sp}\right)}{x^x. y^y}\right]^{\frac{1}{x+y}}$$
 In case of Common ion, the Solubility decreases as reaction moves backwards. E.g. AgCl in Cl⁻
$$s = \frac{K_{sp}^{AgCl}}{\left[Cl^-\right]}$$

In case of Common ion, the Solubility decreases as reaction

$$s = \frac{K_{sp^{AgCl}}}{[Cl^{-}]}$$

In case of complex formation, solubility of salt is maximum.

Ionic Product of salt

For a salt
$$A_x B_y$$
 $K_{IP} > K_{sp}$ Ppt occurs $K_{IP} = [A^{y+}]^x [B^{x-}]^y$ $K_{IP} < K_{sp}$ Unsaturated soln $K_{IP} = K_{sp}$ Saturated so 30